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*Main results *Relevance of rotation and “**Two solid, rotating, selt-gravitating bodies
“* We have derived expressions describing the gravitational Se‘f-g I’aVI':y “* Make the problem look like the particle two-body problem (and thus Kepler’s problem!) by writing ¥ = ¢] — ¢5
interaction of two arbitrarily shaped, rotating bodies . | | | | o |
 Scaling behaviour of the various parameters: % Couple two single-body actions by adding them together and then adding the mutual gravitational potential:
% Self-gravity is included completely and finite deformations are 1 | hitpsiwwwyoutube.comfwatch?v=6{UpX7J7ySo0
allowed I ~oT (1 130T + 02 TQ)—% 1+ ilWGﬁ : “Thg tet.hered.moc.)n”. The moon’s G d3X1 d3X2 p1P2
. . , , N y v2 [ L? orbital history is still hotly debated, H\Il + Ry - Pl — R - QOEH
** Extension to many bodies should be straightforward rotation — - cf. e.g. (Zahnle et al, 2015). We
self-gravity .
. . . . hope that our work might be able % Equations of motion:
** Fluid-solid boundaries are analysed * For the whole Earth (L ~ R@); to shed some light on this problem 9
as well as others, perhaps in the .. 3
17 Gp eravitational forcing field of exoplanets, where objects ,LL‘I’ + /d X1,01F2 =0,
Y ~ e foreh ~ 3 cannot be approximated as purely
& - - v clastic lorcing solid/liquid spheres, ellipses, discs 3 . : 1
“‘MOtlvatlon OT Coriolis forces N T etc. cf. e.g. (Lock et al., 2017). A ,07;902 -V, T:; — ,02")’;” + p; |:ﬂ7, X (Qz X 90:) + 2€2; X 90,75 + 2; % 90:} T piR;J-F ‘ [Fj — M. /dSXiPiFj] =0,
inertial forces  4hrs question of particular interest to the ?
“ Long period free-oscillations are a useful probe of density present authors concerns the . 3 . ~
structure — self-gravity and rotation are crucial! < Deformations occurring on typical timescale of effect of the moon on the Earth's (Or + Q;x) (I - 2;) £ [ d°xipip; ¥ (Ri ' Fj) =0
<s\/47Gp ~ 430 s shouldn’t be affected by self- long period free-oscillations, which . . . . o e Lo i . . . .
< Second- and higher-order effects of self-gravity might be gravity Woull?i IT pr}nCIp][eth}ﬂvolvi only a * Orbital motion, rigid-body motion and “simplified” elastodynamics all coupled together (i=1,2) — internal deformation
: small exiension o IS WOrK. ' I ' ' Tal
important influencing orbital motion explicitly
. e . . GMpy 4
“ Avoids introducing approximations early on “ For spherical bodies / d3X1p11‘2 = quuq] ... cf. Kepler's problem!
. . :
KX : Tk ' *0 , . .
Motion decomposed so as to facilitate both computation and * DeCOm pOSItIOﬂ Of the mOthﬂ % Tidal forcing drops out of the analysis naturally

comprehension
% Standard formulation of continuum mechanics with the motion defined by the function

% Interesting physics & ¢(x,t) from a reference body to physical space
‘ [] [ ] [ ] [ ] [ ]
< Decompose into CoM motion & relative rotation with superimposed elastic SN O le solid - rotatl Nng, Se\f—g ravitatl Nng
East deformation: : :
s body with a fluid core
IR v %2 P, 1) = pelt) + R(E) - or(x, ) * In th bod d ibed ab ke bod [o
ggé”. 9%%%% vix.t) = v.(1 R(t) - [v..(t) + Q(t) X . 1 *o*.nt. e two-poqay system descri el apove take po y1l tq resiae
“¢ 4 B2 (x,) e(t) + R(2) - [vo (1) (t) X pr(x, )] inside body 2 and add to the action a Lagrange-multiplier term
p < No change to the information! Just expressing it in a different and ultimately more which eﬁorces tangential slip along the boundary between the

2% ) informative manner. See below. bodies:

8% s . 1 Fluid-solid boundaries in continuum
fowovy S & 47 dSIlo oy oo mechanics. Tangential slip occurs at the
ou1 0 0L 2 boundary so the points either side of the

Na} : ' ; ' “ Equations of motion are just as above, but with forcing on the RHS boundary can be far apart in reference space;
0 — ) . L N

Tomographic image of LLSVPs. * Slﬂg |e SOlld, rOta“ ﬂg, Se‘f graVItatI ﬂg bOdy due to net forces and torques on the internal boundary: this has caused difficulties historically. He.re

At extremely long periods free- 1 . . .. \gle L;rsoema( XI?Xtet;rmeettg(/)d tr? mg)”dsileée;n%ientlrael

oscillations are sensitive to long- Equilibrium figure of a solid planet of * Action: ¥+ ... =Ry - / dsS't] froFr)n (Woodhouse & DaHIeUn p1u978) - Tgd

Now that the Earth's spherically equilibrium tidally-locked with an S= [ d*zd Zpv?+ Zpv:+ Zp|Q x — W(x.F 1

symmetric structure is fairly well- identical body. The planets assume a Qp © 2'0 " QPH #rl (. For) pip; + .. =F / dS't;

known we hope that normal counterintuitive shape resembling a 1 / M Js

modes will be useful in probing peanut! The perturbation parameter + =Gp p(X ) d3x’

(Cottaar & Lekic, 2016). so as to make the shape clear. )y ﬁ

4+ <a, PP, X V7~> + </3, p90r> “* The “orbital” Comppnent of this systgm should be very small. It ,
represents the motion of the respective CoMs of the “core” and T FREAK. OUT PROUT FIFTEEN MINUTES INTO

N : : : “mantle” about one another. Scope for approximation... REPDING ANYTHING ABOUT THE EARTHS (ORE

“*An Interesting calculation % Equations of motion: L SO CME BRI UL

“ Take the case of two solid bodies (see right) and enforce tidal- oV, v B : _

locking and hydrostatic equilibrium P Ot Vo Tr = pye +p (X (X @) + 202 X v + QX ¢y | =0 9, ' ' *References
g and hy 0 *Numerical solution — for the future
. . . : : — % J. H. Woodh F A. Dahl hysical

“ Assume the undeformed bodies as identical spheres and Oy (H"“ ﬂ) + 82X (H"“ Q) 0, Direct solut fth ' o is hard due 1o 4 joumaﬂﬂ?eriﬁiif;dss 335?1967%)660'0 Yo

- ST - _ “ Direct solution of the equations as written is hard due to time- ’ |
calculate their equilibrium topography perturbatively. V. = const., d % K. J. Zahnle. R. Lupu, A. Dobrovolskis and N. H.
. . _ dependence under the mtegrals Sleep, Earth and Planetary Science Letters 427,
 To first order the topography is expressed in terms of the . | | | 74 (2015).
(unknown) gravitational and (known) centrifugal/tidal potentials _ ; ; * | am currently working on an analytical expansion of the net force # 5. Cottaar and V. Lekis, Geophysical Journal
as Constraints: [ pp,d°x = [ pp, X v,d°x =0, term, although this is unlikely to be efficient to compute International 207, 1122 (2016).
p(1) — 1 W (a) + M (a) Boundary conditions: T, - =0, < More realistically, | am writing a code to calculate the gravitational ¥ > ook 5 E‘e?;eg"zrf’gé%“ggz ?;GeOphySical
— (0) ¢ (a P (a potential of an arbitrarily shaped body by solving the Poisson . |
8T¢ ’r:a , , . % D. Al-Attar, O. Crawford, A. P. Valentine and J.
/ equation using a Dirichlet-to-Neumann map Trampert, submitted to Geophysical Journal
. . , , L, L — International
* Finally solve "Clairaut's equation” for the perturbed gravitational Ny = —G/ 0 P (’O/T ; d°x’ < Runge-Kutta solvers will advance the orbital and rigid-body
potential: v ler — el equations. These will be coupled to spectral-element codes to solve
2 (1) arp(O) (1) (1) % Rigid-body motion coupled to “net momentum-free” elastodynamics the equations of elastodynamics on each body at each time-step &Thanks
V — 47TG ( —I— ) — O & :
¢ argb(o) ¢ ¥ ’ “* More complicated to look at but clearer what is happening physically. Cf. » The prqblem mvolves a perturbed Kepler problem so the method of “ MM would like to thank DAA for the latter’s
4 osculating orbits should be useful boundless patience during the gestation of this
(1) + . (1) p(O) (1) (1) Ov work which began as a Master’s Thesis.
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