
❖Decomposition of the motion 
❖ Standard formulation of continuum mechanics with the motion defined by the function 
φ(x,t) from a reference body to physical space 

❖ Decompose into CoM motion & relative rotation with superimposed elastic 
deformation:  

❖ No change to the information! Just expressing it in a different and ultimately more 
informative manner. See below.

❖Single solid, rotating, self-gravitating body 
❖ Action: 

❖ Equations of motion: 

❖ Rigid-body motion coupled to “net momentum-free” elastodynamics 

❖ More complicated to look at but clearer what is happening physically. Cf. 

❖Two solid, rotating, self-gravitating bodies 
❖ Make the problem look like the particle two-body problem (and thus Kepler’s problem!) by writing 

❖ Couple two single-body actions by adding them together and then adding the mutual gravitational potential: 

❖ Equations of motion: 

❖ Orbital motion, rigid-body motion and “simplified” elastodynamics all coupled together (i=1,2) — internal deformation 
influencing orbital motion explicitly 

❖ For spherical bodies                                             … cf. Kepler’s problem! 

❖ Tidal forcing drops out of the analysis naturally

Variational Principles for the Elastodynamics of Rotating Planets
❖Main results 
❖ We have derived expressions describing the gravitational 

interaction of two arbitrarily shaped, rotating bodies 

❖ Self-gravity is included completely and finite deformations are 
allowed 

❖ Extension to many bodies should be straightforward 

❖ Fluid-solid boundaries are analysed

❖Motivation 
❖ Long period free-oscillations are a useful probe of density 

structure — self-gravity and rotation are crucial! 

❖ Second- and higher-order effects of self-gravity might be 
important 

❖ Avoids introducing approximations early on 

❖ Motion decomposed so as to facilitate both computation and 
comprehension 

❖ Interesting physics 😊

❖Single solid, rotating, self-gravitating 
body with a fluid core 
❖ In the two-body system described above take body 1 to reside 

inside body 2 and add to the action a Lagrange-multiplier term 
which enforces tangential slip along the boundary between the 
bodies: 

❖ Equations of motion are just as above, but with forcing on the RHS 
due to net forces and torques on the internal boundary: 

❖ The “orbital” component of this system should be very small. It 
represents the motion of the respective CoMs of the “core” and 
“mantle” about one another. Scope for approximation…

“The tethered moon”. The moon’s 
orbital history is still hotly debated, 
cf. e.g. (Zahnle et al., 2015). We 
hope that our work might be able 
to shed some light on this problem 
as well as others, perhaps in the 
field of exoplanets, where objects 
cannot be approximated as purely 
solid/liquid spheres, ellipses, discs 
etc. cf. e.g. (Lock et al., 2017). A 
question of particular interest to the 
present authors concerns the 
effect of the moon on the Earth’s 
long period free-oscillations, which 
would in principle involve only a 
small extension of this work.

Tomographic image of LLSVPs. 
At extremely long periods free-
oscillations are sensitive to long-
wavelength variations in density. 
Now that the Earth’s spherically 
symmetric structure is fairly well-
known we hope that normal 
modes will be useful in probing 
lateral density variations. From 
(Cottaar & Lekic, 2016).

F lu id-so l id boundar ies in cont inuum 
mechanics. Tangential slip occurs at the 
boundary so the points either side of the 
boundary can be far apart in reference space; 
this has caused difficulties historically. Here 
we use a novel method to model tangential 
slip from (Al-Attar et al., unpublished). Figure 
from (Woodhouse & Dahlen, 1978).

❖An interesting calculation 
❖ Take the case of two solid bodies (see right) and enforce tidal-

locking and hydrostatic equilibrium 

❖ Assume the undeformed bodies as identical spheres and 
calculate their equilibrium topography perturbatively. 

❖ To first order the topography is expressed in terms of the 
(unknown) gravitational and (known) centrifugal/tidal potentials 
as 

❖ Finally solve “Clairaut’s equation” for the perturbed gravitational 
potential: 

❖Relevance of rotation and 
self-gravity 
❖ Scaling behaviour of the various parameters: 

❖ For the whole Earth (             ): 

❖ Deformations occurring on typical timescale of 
≲                           shouldn’t be affected by self-
gravity
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Equilibrium figure of a solid planet of 
uniform density in hydrostatic 
equilibrium tidally-locked with an 
identical body. The planets assume a 
counterintuitive shape resembling a 
peanut! The perturbation parameter 
has been made unrealistically large 
so as to make the shape clear.

❖Numerical solution — for the future 
❖ Direct solution of the equations as written is hard due to time-

dependence under the integrals 

❖ I am currently working on an analytical expansion of the net force 
term, although this is unlikely to be efficient to compute 

❖ More realistically, I am writing a code to calculate the gravitational 
potential of an arbitrarily shaped body by solving the Poisson 
equation using a Dirichlet-to-Neumann map 

❖ Runge-Kutta solvers will advance the orbital and rigid-body 
equations. These will be coupled to spectral-element codes to solve 
the equations of elastodynamics on each body at each time-step 

❖ The problem involves a perturbed Kepler problem so the method of 
osculating orbits should be useful  

❖ For bodies that deviate only slightly from spherical symmetry two-
timescale analysis could be used to isolate secular orbital changes 
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